Computing the fundamental group of a higher-rank graph
نویسندگان
چکیده
Abstract We compute a presentation of the fundamental group higher-rank graph using coloured description graphs developed by third author. groups several examples from literature. Our results fit naturally into suite known geometrical about when we show that abelianization is homology group. end with calculation which gives non-standard Klein bottle to one normally found in
منابع مشابه
Higher Rank Graph Algebras
These are lecture notes of a course given by Alex Kumjian at the RMMC Summer School at the University of Wyoming, Laramie, June 1-5, 2015. Warning: little proofreading has been done.
متن کاملHigher Rank Graph C∗-algebras
Building on recent work of Robertson and Steger, we associate a C∗–algebra to a combinatorial object which may be thought of as a higher rank graph. This C∗–algebra is shown to be isomorphic to that of the associated path groupoid. Various results in this paper give sufficient conditions on the higher rank graph for the associated C∗–algebra to be: simple, purely infinite and AF. Results concer...
متن کاملThe fundamental group of the clique graph
Given a finite connected bipartite graph B = (X, Y ) we consider the simplicial complexes of complete subgraphs of the square B of B and of its induced subgraphs B[X] and B[Y ]. We prove that these three complexes have isomorphic fundamental groups. Among other applications, we conclude that the fundamental group of the complex of complete subgraphs of a graph G is isomorphic to that of the cli...
متن کاملA note on the order graph of a group
The order graph of a group $G$, denoted by $Gamma^*(G)$, is a graph whose vertices are subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent if and only if $|H|big{|}|K|$ or $|K|big{|}|H|$. In this paper, we study the connectivity and diameter of this graph. Also we give a relation between the order graph and prime graph of a group.
متن کاملThe path space of a higher-rank graph
We construct a locally compact Hausdorff topology on the path space of a finitely aligned k -graph Λ . We identify the boundary-path space ∂Λ as the spectrum of a commutative C ∗ -subalgebra D Λ of C ∗ (Λ) . Then, using a construction similar to that of Farthing, we construct a finitely aligned k -graph Λ ̃ with no sources in which Λ is embedded, and show that ∂Λ is homeomorphic to a subset of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 2021
ISSN: ['1464-3839', '0013-0915']
DOI: https://doi.org/10.1017/s0013091521000420